TALL COL

2018

2nd Semester

CHEMISTRY

(Honours)

PAPER-C3P

(Practical)

Full Marks: 20

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

- 1. Estimate the total amount of Fe^{2+} and Fe^{3+} in the supplied solution using $K_2Cr_2O_7$ solution.
- 2. Laboratory Note Book.
- 3. Viva-voce.

Procedure

1. Prepare 250 cc standard $\left(\frac{N}{10}\right)$ $K_2Cr_2O_7$ solution.

- 2. Preparation of stock solution:

 Transfer the supplied solution marked 'V' into a 250 ml volumetric flask quantitatively and make the volume upto the mark with distilled water.
- Pipette out 25 ml of the stock solution into a 250 ml conical flask, dilute to 150 ml with distilled water. Add 5 ml conc. H₂SO₄, 5 ml syrupy H₃PO₄ followed by few drops of BaDS indicator. Titrate the mixture with standard K₂Cr₂O₇ solution with constant shaking until the first permanent red-violet colouration. Repeat the experiment to get concordant result. Record the titre value and calculate the amount of Fe(II) present in solution.
- 4. Estimation of Fe^{II} + Fe^{III} iron:

 Pipette out 25 ml of the mixture into a 500 ml conical flask. Add 20 ml conc. HCl. Heat nearly to boiling and reduce Fe^{III} to Fe^{II} using small pieces of AR grade Al-foil stepwise. Dilute the solution to 200 ml with distilled water. Add 5 ml conc. H₂SO₄, 5 ml sympy H₃PO₄ followed by few drops of BaDS indicator. Titrate with standard K₂Cr₂O₇ with constant shaking until the first permanent red-violet colouration. Repeat the experiment to get concordant result. Record the titra value and calculate the amount of Fe^{II} and Fe^{III} present in the solution. And from the difference report the amount of Fe^{III} present in solution.

[1000 ml IN $K_2Cr_2O_7$ solution = 55.85 gm Fe]